メニュー

Enter a search word

Event

Online【GIR Open Seminar】 Prof. Antonio Di Pietro / University of Cordoba (Spain)

Date 2021.2.9 (16:30 - 18:30)
Venue

Zoom

Google Classroom Code 3bvyl5y
Speaker Dr. Antonio Di Pietro
Affiliation University of Cordoba (Spain)
Title Google classroom is now available.
1. Go to https://classroom.google.com and sign in.
2. At the upper right, click 「+」 and click 「join」.
3. Enter the class code 3bvyl5y.

---------------------------------------------------------------------------
※On-line Seminar via Zoom and Google Classroom.
Join the Zoom Meeting
https://tuat-jp.zoom.us/j/88076244874?pwd=aHIyWkZUR1FNYUswUndOM3E2dmw4dz09
Meeting ID: 880 7624 4874
Pass Code: Fusarium
-------------------------------------------------------------------------------------------------------------------------
 ◆Prof. Antonio Di Pietro (Full Professor, Department of Genetics, University of Cordoba, Spain)

 ◆Title: "Host adaptation and evolution in the fungal pathogen Fusarium oxysporum"

〈Abstract〉
Fungal pathogens often show exquisite host adaptation, but also undergo rapid evolution leading to shifts orexpansions in host range. The soil-inhabiting ascomycete Fusarium oxysporum causes devastating losses in more than ahundred different crops and disseminated infections in immunocompromised humans. Remarkably, a single field isolate ofthis fungus can kill tomato plants, immunodepressed mice and the model insect host Galleria mellonella. Similar to otherfungal pathogens, F. oxysporum carries accessory genomic regions which are rich in repeats and transposable elements(TEs) and have been associated with host range. We used experimental evolution to study how F. oxysporum adapts todifferent environments. Serial passaging of a clonal isolate through tomato plants, complete medium or minimal mediumplates resulted in populations displaying significantly increased fitness in the respective passaging condition. Nicheadaptation was associated with marked alterations in growth, development and virulence compared to the original clonalisolate. Sequencing of the evolved lines revealed changes both at the nucleotide and chromosome level, many of whichbecame fixed in the population. More than half of the detected variants were DNA TE insertions, with two elements,Hormin and Fot, accounting for more than 90% of the detected events. Interestingly, multiple independent lineagesevolved under the same conditions carried TE events at the same locus. For example, 4 of 5 lines that were passagedthrough complete medium plates carried a TE insertion in a gene of unknown function, and 3 of these lines later acquirednon-synonymous secondary mutations in the regulatory gen velB, which further increased their fitness under the plategrowth condition. Importantly, the mutations selected in plate-adapted populations had a significant fitness cost on plantand animal hosts, leading to attenuated virulence in the tomato and the Galleria infection models. Our results suggest thatDNA transposons act as major drivers of adaptive evolution in F. oxysporum and reveal trade-offs between developmentalprograms favoring fungal invasion versus proliferation. 
Language English
Intended for Everyone is welcome to join.
Co-Organized by Institute of Global Innovation Research, “FOOD” Fukuhara Team
Excellent Leader Development for Super Smart Society by New Industry Creation and Diversity
Contact Institute of Global Innovation Research, Institute of Agriculture
Prof. Tsutomu Arie
Email: arie(at)cc.tuat.ac.jp

このページの上部へ